A decay result for certain windows generating orthogonal Gabor bases

نویسنده

  • A. J. E. M. Janssen
چکیده

We consider tight Gabor frames (h, a = 1, b = 1) at critical density with h of the form Z−1(Zg/|Zg|). Here Z is the standard Zak transform and g is an even, real, well-behaved window such that Zg has exactly one zero, at ( 2 , 1 2 ), in [0, 1). We show that h and its Fourier transform have maximal decay as allowed by the Balian-Low theorem. Our result illustrates a theorem of Benedetto, Czaja, Gadziński, and Powell, case p = q = 2, on sharpness of the Balian-Low theorem. Math Subject Classifications (2000): 42C15, 42C25, 94A12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of Gabor Systems via the Fourier Transform

We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system’s generating functions.

متن کامل

Frames and orthonormal bases for variable windowed Fourier transforms

We generalize the windowed Fourier transform to the variable-windowed Fourier transform. This generalization brings the Gabor transform and the wavelet transform under the same framework. Using frame theory we characterize frames and orthonormal bases for the variable windowed Fourier series (VWFS). These characterizations are formulated explicitly in terms of window functions. Therefore they c...

متن کامل

(non-)existence of Wilson Bases for General Time-frequency Lattices

Motivated by a recent generalization of the Balian-Low theorem and by new research in wireless communications we analyze the construction of Wilson bases for general time-frequency lattices. We show that orthonormal Wilson bases for L(R) can be constructed for any time-frequency lattice whose volume is 1 2 . While this may be expected, our second result may come as a surprise. Namely we prove t...

متن کامل

Hyperbolic secants yield Gabor frames

We show that (g2, a, b) is a Gabor frame when a > 0, b > 0, ab < 1 and g2(t) = ( 1 2πγ) 1 2 (cosh πγt)−1 is a hyperbolic secant with scaling parameter γ > 0. This is accomplished by expressing the Zak transform of g2 in terms of the Zak transform of the Gaussian g1(t) = (2γ) 1 4 exp(−πγt2), together with an appropriate use of the Ron-Shen criterion for being a Gabor frame. As a side result it f...

متن کامل

Characterization and computation of canonical tight windows for Gabor frames

Let (gna,mb)n,m∈Z be a Gabor frame for L (R) for given window g. We show that the window h0 = S− 1 2 g that generates the canonically associated tight Gabor frame minimizes ‖g − h‖ among all windows h generating a normalized tight Gabor frame. We present and prove versions of this result in the time domain, the frequency domain, the time-frequency domain, and the Zak transform domain, where in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007